Ore extensions over duo rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ore Extensions over Pseudo-valuation Rings

Let R be a commutative Noetherian Q-algebra (Q is the field of rational numbers). Let δ be a derivation of R and σ be an automorphism of R. Then we prove the following: 1. If R is a Pseudo-valuation ring, then R[x, δ] is also a Pseudo-valuation ring. 2. If R is a divided ring, then R[x, δ] is also a divided ring. 3. If R is a Pseudo-valuation ring, thenR[x, x−1, σ] is also a Pseudo-valuation ri...

متن کامل

Ore Extensions over near Pseudo-valuation Rings

We recall that a ring R is called near pseudo-valuation ring if every minimal prime ideal is a strongly prime ideal. Let R be a commutative ring, σ an automorphism of R. Recall that a prime ideal P of R is σ-divided if it is comparable (under inclusion) to every σ-stable ideal I of R. A ring R is called a σ-divided ring if every prime ideal of R is σ-divided. Also a ring R is almost σ-divided r...

متن کامل

Ore Extensions over Weak Σ - Rigid Rings

Let R be a ring, σ an automorphism of R and δ a σ-derivation of R. We recall that a ring R is said to be a δ-ring if aδ(a) ∈ P (R) implies a ∈ P (R), where P (R) denotes the prime radical of R. It is known that, if R is a Noetherian ring, σ an automorphism of R such that aσ(a) ∈ P (R) implies a ∈ P (R) and δ a σ-derivation of R such that R is a δ-ring with σ(δ(a)) = δ(σ(a)), for all a ∈ R, then...

متن کامل

2 5 O ct 2 00 4 ORE EXTENSIONS OVER DUO RINGS

We show that there exist noncommutative Ore extensions in which every right ideal is two-sided. This answers a problem posed by Marks in [5]. We also provide an easy construction of one sided duo rings.

متن کامل

Ore Extensions over near Pseudo-valuation Rings and Noetherian Rings

We recall that a ring R is called near pseudo-valuation ring if every minimal prime ideal is a strongly prime ideal. Let R be a commutative ring, σ an automorphism of R and δ a σderivation of R. We recall that a prime ideal P of R is δ-divided if it is comparable (under inclusion) to every σ-invariant and δ-invariant ideal I (i.e. σ(I) ⊆ I and δ(I) ⊆ I) of R. A ring R is called a δ-divided ring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2006

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2005.07.016